Skip to main content
Biology LibreTexts

16.1: Introduction

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In the previous chapter we looked at clustering, which provides a tool for analyzing data without any prior knowledge of the underlying structure. As we mentioned before, this is an example of “unsupervised” learning. This chapter deals with supervised learning, in which we are able to use pre-classified data to construct a model by which to classify more datapoints. In this way, we will use existing, known structure to develop rules for identifying and grouping further information.

    There are two ways to do classification. The two ways are analogous to the two ways in which we perform motif discovery: HMM, which is a generative model that allows us to actually describe the probability of a particular designation being valid, and CRF, which is a discriminative method that allows us to distinguish between objects in a specific context. There is a dichotomy between generative and discriminative approaches. We will use a Bayesian approach to classify mitochondrial proteins, and SVM to classify tumor samples.

    In this lecture we will look at two new algorithms: a generative classifier, Nave Bayes, and a discriminative classifier, Support Vector Machines (SVMs). We will discuss biological applications of each of these models, specifically in the use of Nave Bayes classifiers to predict mitochondrial proteins across the genome and the use of SVMs for the classification of cancer based on gene expression monitoring by DNA microarrays. The salient features of both techniques and caveats of using each technique will also be discussed.

    Like with clustering, classification (and more generally supervised learning) arose from efforts in Artificial Intelligence and Machine Learning. Furthermore, much of the motivating infrastructure for classification had already been developed by probability theorists prior to the advent of either AI or ML.

    This page titled 16.1: Introduction is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Manolis Kellis et al. (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.