Skip to main content
Biology LibreTexts

6.7: Study 6- Identifying virulence factors in Meningitis

  • Page ID
    40949
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Bacterial meningitis is a disease that is caused by very diverse bacteria that are able to get into the blood stream and cross the blood-brain barrier. This study aimed to investigate the virulence factors that can turn bacteria into a type that can cause meningitis.

    Figures removed due to copyright restrictions. See similar figures in this journal article: Smillie, Chris S. et al. "Ecology drives a global network of gene exchange connecting the human microbiome." Nature 480, no. 7376 (2011): 241-244.

    Figure 6.9: Rate of horizontal gene transfer between different bacterial groups taken from non-human sites, human sites, same site within human, and different sites within human.

    Figures removed due to copyright restrictions. See similar figures in this journal article: Smillie, Chris S. et al. "Ecology drives a global network of gene exchange connecting the human microbiome." Nature 480, no. 7376 (2011): 241-244.

    Figure 6.10: Rate of horizontal gene transfer between bacterial groups sampled from the same continent and from different continents.
    The study involved 70 bacterial strains isolated from meningitis patients, comprising 175172 genes in total. About 24000 of these genes had no known function. There could be some genes among these 24000

    page141image53685840.png
    Courtesy of Macmillan Publishers Limited. Used with permission.
    Source: Smillie, Chris S., et al. "Ecology Drives a Global Network of Gene Exchange Connecting the Human Microbiome." Nature 480, no. 7376 (2011): 241-4.

    Figure 6.11: Rate of horizontal gene transfer between different human and non-human sites (top right) and the percentage of antiboitic resistance genes among horizonta gene transfers (bottom left)

    that might be leading to meningitis causing bacteria and might be good drug targets. Moreover, 82 genes were discovered to be involved in horizontal gene transfer. 69 of these had known functions and 13 of them belonged to the 24000 genes that we do not have any functional information. Among the genes with known function, some of them were related to AR, detoxification, and also some were related to known virulence factors such as hemalysin that lets the bacteria live in the blood stream and adhesin that helps the bacteria latch onto the vein and potentially cross blood brain barrier.


    This page titled 6.7: Study 6- Identifying virulence factors in Meningitis is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Manolis Kellis et al. (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.