Skip to main content
Biology LibreTexts

4.10: Lineweaver-Burk Plots

  • Page ID
    3038
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Figure 4.9.1.png
    Figure 4.9.1: Line-Weaver Burk Plot

    For a Lineweaver-Burk, the manipulation is using the reciprocal of the values of both the velocity and the substrate concentration. The inverted values are then plotted on a graph as \(1/V\) vs. \(1/[S\)]. Because of these inversions, Lineweaver-Burk plots are commonly referred to as ‘double-reciprocal’ plots. As can be seen at left, the value of \(K_M\) on a Lineweaver Burk plot is easily determined as the negative reciprocal of the x-intercept , whereas the \(V_{max}\) is the inverse of the y-intercept. Other related manipulation of kinetic data include Eadie-Hofstee diagrams, which plot V vs V/[S] and give \(V_{max}\) as the Y-axis intercept with the slope of the line being \(-K_M\).

    Contributors


    This page titled 4.10: Lineweaver-Burk Plots is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Kevin Ahern & Indira Rajagopal.

    • Was this article helpful?