7.2B: Supercoiling

Learning Objectives

- Assess the role of supercoiling in prokaryotic genomes

DNA supercoiling refers to the over- or under-winding of a DNA strand, and is an expression of the strain on that strand. Supercoiling is important in a number of biological processes, such as compacting DNA. Additionally, certain enzymes such as topoisomerases are able to change DNA topology to facilitate functions such as DNA replication or transcription. Mathematical expressions are used to describe supercoiling by comparing different coiled states to relaxed B-form DNA.
As a general rule, the DNA of most organisms is negatively supercoiled. In a “relaxed” double-helical segment of B-DNA, the two strands twist around the helical axis once every 10.4 to 10.5 base pairs of sequence. Adding or subtracting twists, as some enzymes can do, imposes strain. If a DNA segment under twist strain were closed into a circle by joining its two ends and then allowed to move freely, the circular DNA would contort into a new shape, such as a simple figure-eight. Such a contortion is a supercoil.

The simple figure eight is the simplest supercoil, and is the shape a circular DNA assumes to accommodate one too many or one too few helical twists. The two lobes of the figure eight will appear rotated either clockwise or counterclockwise with respect to one another, depending on whether the helix is over or underwound. For each additional helical twist being accommodated, the lobes will show one more rotation about their axis.

The noun form “supercoil” is rarely used in the context of DNA topology. Instead, global contortions of a circular DNA, such as the rotation of the figure-eight lobes above, are referred to as writhe. The above example illustrates that twist and writhe are interconvertible. “Supercoiling” is an abstract mathematical property representing the sum of twist and writhe. The twist is the number of helical turns in the DNA and the writhe is the number of times the double helix crosses itself.
over on itself (these are the supercoils).

Extra helical twists are positive and lead to positive supercoiling, while subtractive twisting causes negative supercoiling. Many topoisomerase enzymes sense supercoiling and either generate or dissipate it as they change DNA topology. In part because chromosomes may be very large, segments in the middle may act as if their ends are anchored. As a result, they may be unable to distribute excess twist to the rest of the chromosome or to absorb twist to recover from underwinding—the segments may become supercoiled, in other words. In response to supercoiling, they will assume an amount of writhe, just as if their ends were joined.

Supercoiled DNA forms two structures; a plectoneme or a toroid, or a combination of both. A negatively supercoiled DNA molecule will produce either a one-start left-handed helix, the toroid, or a two-start right-handed helix with terminal loops, the plectoneme. Plectonemes are typically more common in nature, and this is the shape most bacterial plasmids will take. For larger molecules, it is common for hybrid structures to form—a loop on a toroid can extend into a plectoneme. If all the loops on a toroid extend, it becomes a branch point in the plectonemic structure.

The Importance of DNA Supercoiling

DNA supercoiling is important for DNA packaging within all cells. Because the length of DNA can be thousands of times that of a cell, packaging this genetic material into the cell or nucleus (in eukaryotes) is a difficult feat. Supercoiling of DNA reduces the space and allows for much more DNA to be packaged. In prokaryotes, plectonemic supercoils are predominant, because of the circular chromosome and relatively small amount of genetic material. In eukaryotes, DNA supercoiling exists on many levels of both plectonemic and solenoidal supercoils, with the solenoidal supercoiling proving the most effective in compacting the DNA. Solenoidal supercoiling is achieved with histones to form a 10 nm fiber. This fiber is further coiled into a 30 nm fiber, and further coiled upon itself numerous times more.

DNA packaging is greatly increased during nuclear division events such as mitosis or meiosis, where DNA must be compacted and segregated to daughter cells. Condensins and cohesins are structural maintenance of chromosome (SMC) proteins that aid in the condensation of sister chromatids and the linkage of the centromere in sister chromatids. These SMC proteins induce positive supercoils.

Supercoiling is also required for DNA and RNA synthesis. Because DNA must be unwound for DNA and RNA polymerase action, supercoils will result. The region ahead of the polymerase complex will be unwound; this stress is compensated with positive supercoils ahead of the complex. Behind the complex, DNA is rewound and there will be compensatory negative supercoils. It is important to note that topoisomerases such as DNA gyrase (Type II Topoisomerase) play a role in relieving some of the stress during DNA and RNA synthesis.

Key Points

- As a general rule, the DNA of most organisms is negatively supercoiled.
- The simple figure eight is the simplest supercoil, and is the shape a circular DNA assumes to accommodate one too many or one too few helical twists.
- DNA supercoiling is important for DNA packaging within all cells.
Key Terms

- **supercoiling**: The coiling of the DNA helix upon itself; can cause disruption to transcription and lead to cell death.
- **DNA**: A biopolymer of deoxyribonucleic acids (a type of nucleic acid) that has four different chemical groups, called bases: adenine, guanine, cytosine, and thymine.
- **chromosome**: A structure in the cell nucleus that contains DNA, histone protein, and other structural proteins.