5.12C: The Calvin Cycle

The Calvin cycle is organized into three basic stages: fixation, reduction, and regeneration.

Learning Objectives

- Describe the Calvin Cycle

Key Points

- The Calvin cycle refers to the light-independent reactions in photosynthesis that take place in three key steps.
- Although the Calvin Cycle is not directly dependent on light, it is indirectly dependent on light since the necessary energy carriers (ATP and NADPH) are products of light-dependent reactions.
- In fixation, the first stage of the Calvin cycle, light-independent reactions are initiated; CO₂ is fixed from an inorganic to an organic molecule.
- In the second stage, ATP and NADPH are used to reduce 3-PGA into G3P; then ATP and NADPH are converted to ADP and NADP⁺, respectively.
- In the last stage of the Calvin Cycle, RuBP is regenerated, which enables the system to prepare for more CO₂ to be fixed.

Key Terms

- **light-independent reaction**: chemical reactions during photosynthesis that convert carbon dioxide and other compounds into glucose, taking place in the stroma
- **rubisco**: (ribulose bisphosphate carboxylase) a plant enzyme which catalyzes the fixing of atmospheric carbon
dioxide during photosynthesis by catalyzing the reaction between carbon dioxide and RuBP

- **ribulose bisphosphate**: an organic substance that is involved in photosynthesis, reacts with carbon dioxide to form 3-PGA

The Calvin Cycle

In plants, carbon dioxide (CO$_2$) enters the leaves through stomata, where it diffuses over short distances through intercellular spaces until it reaches the mesophyll cells. Once in the mesophyll cells, CO$_2$ diffuses into the stroma of the chloroplast, the site of light-independent reactions of photosynthesis. These reactions actually have several names associated with them. Other names for light-independent reactions include the Calvin cycle, the Calvin-Benson cycle, and dark reactions. The most outdated name is dark reactions, which can be misleading because it implies incorrectly that the reaction only occurs at night or is independent of light, which is why most scientists and instructors no longer use it.

Figure: Light Reactions: Light-dependent reactions harness energy from the sun to produce chemical bonds, ATP, and NADPH. These energy-carrying molecules are made in the stroma where the Calvin cycle takes place. The Calvin cycle is not totally independent of light since it relies on ATP and NADH, which are products of the light-dependent reactions.

The light-independent reactions of the Calvin cycle can be organized into three basic stages: fixation, reduction, and regeneration.
Figure: The Calvin Cycle: The Calvin cycle has three stages. In stage 1, the enzyme RuBisCO incorporates carbon dioxide into an organic molecule, 3-PGA. In stage 2, the organic molecule is reduced using electrons supplied by NADPH. In stage 3, RuBP, the molecule that starts the cycle, is regenerated so that the cycle can continue. Only one carbon dioxide molecule is incorporated at a time, so the cycle must be completed three times to produce a single three-carbon GA3P molecule, and six times to produce a six-carbon glucose molecule.

Stage 1: Fixation

In the stroma, in addition to CO$_2$, two other components are present to initiate the light-independent reactions: an enzyme called ribulose bisphosphate carboxylase (RuBisCO) and three molecules of ribulose bisphosphate (RuBP). RuBP has five atoms of carbon, flanked by two phosphates. RuBisCO catalyzes a reaction between CO$_2$ and RuBP. For each CO$_2$ molecule that reacts with one RuBP, two molecules of 3-phosphoglyceric acid (3-PGA) form. 3-PGA has three carbons and one phosphate. Each turn of the cycle involves only one RuBP and one carbon dioxide and forms two molecules of 3-PGA. The number of carbon atoms remains the same, as the atoms move to form new bonds during the reactions (3 atoms from 3CO$_2$ + 15 atoms from 3RuBP = 18 atoms in 3 atoms of 3-PGA). This process is called carbon fixation because CO$_2$ is “fixed” from an inorganic form into organic molecules.

Stage 2: Reduction

ATP and NADPH are used to convert the six molecules of 3-PGA into six molecules of a chemical called glyceraldehyde 3-phosphate (G3P). This is a reduction reaction because it involves the gain of electrons by 3-PGA. Recall that a reduction is the gain of an electron by an atom or molecule. Six molecules of both ATP and NADPH are used. For ATP, energy is released with the loss of the terminal phosphate atom, converting it to ADP; for NADPH, both energy and a hydrogen atom are lost, converting it into NADP$^+$. Both of these molecules return to the nearby light-dependent reactions to be reused and reenergized.
Stage 3: Regeneration

At this point, only one of the G3P molecules leaves the Calvin cycle and is sent to the cytoplasm to contribute to the formation of other compounds needed by the plant. Because the G3P exported from the chloroplast has three carbon atoms, it takes three “turns” of the Calvin cycle to fix enough net carbon to export one G3P. But each turn makes two G3Ps, thus three turns make six G3Ps. One is exported while the remaining five G3P molecules remain in the cycle and are used to regenerate RuBP, which enables the system to prepare for more CO₂ to be fixed. Three more molecules of ATP are used in these regeneration reactions.