Table of Contents

Genetics is the study of genes, genetic variation, and heredity in living organisms. This online textbook covers major topics in molecular genetics in a problems-based approach. It grew out of teaching a course for upper level undergraduates and graduate students at the Pennsylvania State University.

- **Unit I: Genes, Nucleic Acids, Genomes and Chromosomes**
 - 1: Fundamental Properties of Genes
 - 1.1: Introduction to Genes
 - 1.2: Genes are the Units of Heredity: Mendel’s Laws
 - 1.3: Properties of Genes
 - 1.4: Complementation and Recombination
 - 1.E: Fundamental Properties of Genes (Exercises)
 - 1.S: Additional Readings (Summary)
 - Central Dogma: DNA to RNA to protein
 - Transcription and mRNA structure
 - Finding the Functions of Genes
 - Genetic Methods in Microorganisms
 - Bacteriophage
 - Conjugation in Bacteria
• Gene mapping by conjugal transfer
• Genetic Methods Introduction

○ 2: Structures of Nucleic Acids
 ▪ 2:E: Structures of nucleic acids (Exercises)
 ▪ 2.5: B-Form, A-Form, and Z-Form of DNA
 ▪ 2.8: Intro

○ 3: Isolating and Analyzing Genes
 ▪ 3.1: Recombinant DNA, Polymerase Chain Reaction and Applications to Eukaryotic Gene Structure and Function
 ▪ 3.2: Overview of Recombinant DNA Technology
 ▪ 3.3: Introduction of recombinant DNA into cell and replication: Vectors
 ▪ 3.4: Introducing Recombinant DNA into Host Cells
 ▪ 3.5: Polymerase Chain Reaction (PCR)
 ▪ 3.6: cDNA
 ▪ 3.7: Genomic DNA clones
 ▪ 3.8: Eukaryotic Gene Structure
 ▪ 3.9: Introns and Exons
 ▪ 3.10: Functional analysis of isolated genes
 ▪ 3.6: Isolating and Analyzing Genes (Exercises)

○ 4: Genomes and Chromosomes
 ▪ 4.1: Reassociation kinetics measure sequence complexity
 ▪ 4.2: Analysis of Renaturation curves with Multiple Components
 ▪ 4.3: RNA Abundance
 ▪ 4.4: Genome Analysis by Large Scale Sequencing
 ▪ 4.5: Sizes of genomes - The C-value paradox
 ▪ 4.6: Large Scale Genome Organization
 ▪ 4.7: Comparative Genome Analysis
 ▪ 4.8: Genomes and Chromosomes (Exercises)
 ▪ 4.8: Genomes and Chromosomes (Summary)

• Unit II: Replication, Maintenance and Alteration of the Genetic Material

Chapter 2 covers the structures of nucleic acids (DNA and RNA) and methods for analyzing them biochemically. In addition, this chapter explores some of the insights into gene structure and function, especially in eukaryotes, that the use of these techniques has provided. This includes the separation of mRNA-coding regions into exons, production of multiple proteins from a single gene by differential splicing of the exons in RNA, and the duplication of genes to form gene families.

○ 5. DNA replication I: Enzymes and mechanism
5.E: DNA replication I: Enzymes and Mechanism (Exercises)

- Basic Mechanisms of Replication
- Biochemical and Genetic Identification of Enzymes
- DNA Primers for Synthesis
- DNA Synthesis is Semi-discontinuous
- DNA topology during replication
- Eukaryotic Replication Proteins
- Non-polymerases Enzymes needed for Replication
- Polymerases
- Specialized DNA Structures
- The Replisome

6. DNA replication II: Start, stop and control

- 6.1: The Replicon
- 6.2: Structural analysis of pulse-labeled DNA molecules
- 6.3: Two-dimensional gels to analyze the number and position of replication origins
- 6.4: Replication landscape in E. coli

6.E: DNA replication II: Start, stop and control (Exercises)

- Control of initiation at oriC by methylation
- Linear Templates
- Replication in Bacteria
- Replication in Eukaryotes
- Replication in Yeast
- Stages of DNA synthesis

7: Mutation and Repair of DNA

- 7.0: Prelude to Mutations
- 7.1: Mutations and Mutagens
- 7.2: Reaction with Mutagens
 - Nitrogen Mustard
 - Sulfur Mustard
- 7.3: Ionizing Radiation
- 7.4: Repair Mechanisms

7.E: Mutation and Repair of DNA (Exercises)

7.S: Mutation and Repair of DNA (Summary)

8: Recombination of DNA

- 8.1: Types and Examples of Recombination
- 8.2: Detecting Recombination
- 8.3: Meiotic Recombination
- 8.4: Advantages of Genetic Recombination
8.5: Evidence for Heteroduplexes from Recombination in Fungi
8.6: Holliday Model for General Recombination - Single Strand Invasion
8.7: Double-strand-break model for Recombination
8.8: Enzymes required for recombination in E. coli
8.9: Generation of Single Strands
8.10: Synapsis and Invasion of Single Strands
8.11: Branch Migration
8.12: Resolution
8.E: Recombination of DNA (Exercises)

9. Transposition of DNA
9.1: Transposable Elements (Transposons)
9.2: Are Transposons Parasites or Symbionts?
9.5: Transposition occurs by Insertion into Staggered Breaks
9.6: Classes of Transposable Elements
9.E: Transposition of DNA (Exercises)

Additional consequences of transposition
Dissociation Elements
Mechanism of DNA-mediated transposition
Mechanism of Retrotransposition
Unstable Alleles

Unit III: The Pathway of Gene Expression
10: Transcription: RNA polymerases
10.E: Transcription: RNA polymerases (Exercises)
11: Transcription: Promoters, terminators and mRNA
11.E: Transcription: Promoters, terminators and mRNA (Exercises)
12: RNA processing
12.0: Overview of RNA Processing
12.1: Cutting and Trimming RNA
12.2: Modifications at the 5' and 3' ends of mRNA
12.3: Multiple Mechanisms are Used for Splicing Different Types of Introns
12.4: Self-splicing by group I introns (pre-rRNA of Tetrahymena)
12.5: RNAs Can Function as Enzymes
12.6: Splicing of introns in pre-mRNAs
12.7: Splicing of group II introns
12.8: Alternative Splicing
12.9: RNA editing
Protein activity can be regulated by: • allostery • covalent modification • sequestration. Protein amount can be regulated by the rates of: • gene transcription • RNA processing • RNA turnover • mRNA translation • protein modification • protein assembly • protein turnover.

Unit IV: Regulation of Gene Expression

Protein activity can be regulated by: • allostery • covalent modification • sequestration. Protein amount can be regulated by the rates of: • gene transcription • RNA processing • RNA turnover • mRNA translation • protein modification • protein assembly • protein turnover.

Back Matter

- Index
- Glossary