5.2: Pedigree Analysis

Pedigree charts are diagrams that show the phenotypes and/or genotypes for a particular organism and its ancestors. While commonly used in human families to track genetic diseases, they can be used for any species and any inherited trait. Geneticists use a standardized set of symbols to represent an individual’s sex, family relationships and phenotype. These diagrams are used to determine the mode of inheritance of a particular disease or trait, and to predict the probability of its appearance among offspring. Pedigree analysis is therefore an important tool in both basic research and genetic counseling.

Each pedigree chart represents all of the available information about the inheritance of a single trait (most often a disease) within a family. The pedigree chart is therefore drawn using factual information, but there is always some possibility of errors in this information, especially when relying on family members’ recollections or even clinical diagnoses. In real pedigrees, further complications can arise due to incomplete penetrance (including age of onset) and variable expressivity of disease alleles, but for the examples presented in this book, we will presume complete accuracy of the pedigrees. A pedigree may be drawn when trying to determine the nature of a newly discovered disease, or when an individual with a family history of a disease wants to know the probability of passing the disease on to their children. In either case, a tree is drawn, as shown in Figure \(\PageIndex{2}\), with circles to represent females, and squares to represent males. Matings are drawn as a line joining a male and female, while a consanguineous mating (closely related is two lines).
The affected individual that brings the family to the attention of a geneticist is called the **proband** (or propositus). If an individual is known to have symptoms of the disease (**affected**), the symbol is filled in. Sometimes a half-filled in symbol is used to indicate a known **carrier** of a disease; this is someone who does not have any symptoms of the disease, but who passed the disease on to subsequent generations because they are a heterozygote. Note that when a pedigree is constructed, it is often unknown whether a particular individual is a carrier or not, so not all carriers are always explicitly indicated in a pedigree. For simplicity, in this chapter we will assume that the pedigrees presented are accurate, and represent fully penetrant traits.

Contributors and Attributions

- **Dr. Todd Nickle and Isabelle Barrette-Ng** (Mount Royal University) The content on this page is licensed under CC SA 3.0 licensing guidelines.