2.S: Chromosomes, Mitosis, and Meiosis (Summary)

- Chromosomes are complex and dynamic structures consisting of DNA and proteins (chromatin).
- The degree of chromatin compaction involves proteins and varies between heterochromatic and euchromatic regions and among stages of the cell cycle.
- Chromosomes can be distinguished cytologically based on their length, centromere position, and banding patterns when stained dyes or labeled with sequence-specific probes.
- Homologous chromosomes contain the same series of genes along their length, but not necessarily the same alleles. Sister chromatids initially contain the same alleles.
- Chromosomes are replicated by DNA polymerases and begin at an origin. Replication is bi-directional. Eukaryotes have multiple origins along each chromosome and have telomerase to replicate the ends.
- Mitosis reduces the c-number, but not the n-number. Meiosis reduces both c and n.
- Homologous chromosomes pair (synapase) with each other during meiosis, but not mitosis.
- Several types of structural defects in chromosomes occur naturally, and can affect cellular function and even evolution.
- Aneuploidy results from the addition or subtraction of one or more chromosomes from a group of homologs, and is usually deleterious to the cell.
- Polyploidy is the presence of more than two complete sets of chromosomes in a genome. Even-numbered multiple sets of chromosomes can be stably inherited in some species, especially plants.
- Endopolyploidy is tissue-specific type of polyploidy observed in some species, including diploids.
- Both aneuploidy and structural defects such as duplications can affect gene balance.
- Organelles also contain chromosomes, but these are much more like prokaryotic chromosomes than the nuclear chromosomes of eukaryotes.
<table>
<thead>
<tr>
<th>Key Terms</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>chromosome</td>
<td>meiosis</td>
</tr>
<tr>
<td>core histones</td>
<td>gametes</td>
</tr>
<tr>
<td>nucleosome</td>
<td>prophase (I, II)</td>
</tr>
<tr>
<td>30nm fiber</td>
<td>metaphase (I, II)</td>
</tr>
<tr>
<td>histone H1</td>
<td>anaphase (I, II)</td>
</tr>
<tr>
<td>scaffold proteins</td>
<td>telophase (I, II)</td>
</tr>
<tr>
<td>heterochromatin</td>
<td>cytokinesis</td>
</tr>
<tr>
<td>euchromatin</td>
<td>meiocyte</td>
</tr>
<tr>
<td>satellite DNA</td>
<td>bivalent</td>
</tr>
<tr>
<td>chromatid</td>
<td>syanapase, pair up</td>
</tr>
<tr>
<td>centromere</td>
<td>synaptonemal complex</td>
</tr>
<tr>
<td>metacentric</td>
<td>reductional division</td>
</tr>
<tr>
<td>acrocentric</td>
<td>equational division</td>
</tr>
<tr>
<td>telocentric</td>
<td>leptotene</td>
</tr>
<tr>
<td>holocentric</td>
<td>zygotene</td>
</tr>
<tr>
<td>telomere</td>
<td>pachytene</td>
</tr>
<tr>
<td>homologous</td>
<td>diplotene</td>
</tr>
<tr>
<td>non-homologous</td>
<td>diakinesis</td>
</tr>
<tr>
<td>chromatid</td>
<td>crossing over</td>
</tr>
<tr>
<td>sister chromatid</td>
<td>chiasma (chiasmata)</td>
</tr>
<tr>
<td>non-sister chromatid</td>
<td>polar bodies</td>
</tr>
<tr>
<td>interphase</td>
<td>G_1</td>
</tr>
<tr>
<td>mitosis</td>
<td>G_2</td>
</tr>
<tr>
<td>meiosis</td>
<td>heterogametic</td>
</tr>
<tr>
<td>gametes</td>
<td>aneuploidy</td>
</tr>
<tr>
<td>prophase (I, II)</td>
<td>monsomic</td>
</tr>
<tr>
<td>metaphase (I, II)</td>
<td>trisomic</td>
</tr>
<tr>
<td>anaphase (I, II)</td>
<td>Down syndrome</td>
</tr>
<tr>
<td>telophase (I, II)</td>
<td>deletion</td>
</tr>
<tr>
<td>cytokinesis</td>
<td>duplication</td>
</tr>
<tr>
<td>meiocyte</td>
<td>insertion</td>
</tr>
<tr>
<td>bivalent</td>
<td>inversion</td>
</tr>
<tr>
<td>syanapase, pair up</td>
<td>translocation</td>
</tr>
<tr>
<td>synaptonemal complex</td>
<td>non-disjunction</td>
</tr>
<tr>
<td>reductional division</td>
<td>chromosome breakage</td>
</tr>
<tr>
<td>equational division</td>
<td>polyploidy</td>
</tr>
<tr>
<td>leptotene</td>
<td>x</td>
</tr>
<tr>
<td>zygotene</td>
<td>monoploidy</td>
</tr>
<tr>
<td>pachytene</td>
<td>sterile</td>
</tr>
<tr>
<td>diplotene</td>
<td>tetravalent</td>
</tr>
<tr>
<td>diakinesis</td>
<td>octoploidy</td>
</tr>
<tr>
<td>crossing over</td>
<td>hexaploid</td>
</tr>
<tr>
<td>chiasma (chiasmata)</td>
<td>triploid</td>
</tr>
<tr>
<td>polar bodies</td>
<td>endoreduplication</td>
</tr>
<tr>
<td>G_1</td>
<td>endopolyploidy</td>
</tr>
<tr>
<td>G_2</td>
<td>salivary gland chromosome</td>
</tr>
<tr>
<td>Term</td>
<td>Symbol</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>prophase</td>
<td>S</td>
</tr>
<tr>
<td>anaphase</td>
<td>G0</td>
</tr>
<tr>
<td>DNA polymerase</td>
<td>n</td>
</tr>
<tr>
<td>telomerase</td>
<td></td>
</tr>
<tr>
<td>Hayflick limit</td>
<td></td>
</tr>
<tr>
<td>HeLa cells</td>
<td></td>
</tr>
<tr>
<td>cytokinesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **prophase**: Preparatory phase of mitosis.
- **metaphase**: Chromosomes align at the metaphase plate.
- **anaphase**: Chromosomes are separated and pulled to opposite poles.
- **telophase**: Chromosomes decondense to form replicated chromosomes.
- **DNA polymerase**: Enzyme that synthesizes DNA strands.
- **origin of replication**: The site where DNA replication begins.
- **telomerase**: Enzyme that synthesizes telomeres.
- **riboprotein**: Protein subunit of ribosome.
- **Hayflick limit**: The maximum number of times a human cell can divide in culture.
- **HeLa cells**: Human epithelial carcinoma cells.
- **cytokinesis**: The process of cell division.
- **S**: Synthesis phase of the cell cycle.
- **M**: Mitosis phase of the cell cycle.
- **G0**: Gap phase 0.
- **n**: Chromosome number.
- **c**: Chromosome count.
- **replicated chromosome**: Chromosome with two copies of DNA.
- **karyotype/karyogram**: Visual representation of chromosomes.
- **autosome**: Chromosome that is not a sex chromosome.
- **sex-chromosome**: Chromosome that determines sex.
- **homogametic**: Genetic condition where both chromosomes are identical.
- **chloroplast**: Cell organelle that contains chlorophyll.
- **mitochondria**: Cell organelle that generates energy.
- **endosymbiont**: Organism that lives inside another organism.
- **endosymbiont theory**: Hypothesis that mitochondria and chloroplasts evolved from ancient prokaryotes.
- **organellar chromosome**: Chromosome that is part of a chloroplast or mitochondrion.
- **mtDNA**: Mitochondrial DNA.