7.5: Cell Cycle Checkpoints

What you’ll learn to do: Identify and explain the important checkpoints that a cell passes through during the cell cycle

As we just learned, the cell cycle is a fairly complicated process. In order to make sure everything goes right, there are checkpoints in the cycle:

Let’s learn more about these different checkpoints and how they help control the cell cycle.

Learning Outcomes

- Identify important checkpoints in cell division
Control of the Cell Cycle

The length of the cell cycle is highly variable, even within the cells of a single organism. In humans, the frequency of cell turnover ranges from a few hours in early embryonic development, to an average of two to five days for epithelial cells, and to an entire human lifetime spent in G0 by specialized cells, such as cortical neurons or cardiac muscle cells. There is also variation in the time that a cell spends in each phase of the cell cycle. When fast-dividing mammalian cells are grown in culture (outside the body under optimal growing conditions), the length of the cycle is about 24 hours. In rapidly dividing human cells with a 24-hour cell cycle, the G1 phase lasts approximately nine hours, the S phase lasts 10 hours, the G2 phase lasts about four and one-half hours, and the M phase lasts approximately one-half hour. In early embryos of fruit flies, the cell cycle is completed in about eight minutes. The timing of events in the cell cycle is controlled by mechanisms that are both internal and external to the cell.

Regulation of the Cell Cycle by External Events

Both the initiation and inhibition of cell division are triggered by events external to the cell when it is about to begin the replication process. An event may be as simple as the death of a nearby cell or as sweeping as the release of growth-promoting hormones, such as human growth hormone (HGH). A lack of HGH can inhibit cell division, resulting in dwarfism, whereas too much HGH can result in gigantism. Crowding of cells can also inhibit cell division. Another factor that can initiate cell division is the size of the cell; as a cell grows, it becomes inefficient due to its decreasing surface-to-volume ratio. The solution to this problem is to divide.

Whatever the source of the message, the cell receives the signal, and a series of events within the cell allows it to proceed into mitosis. Moving forward from this initiation point, every parameter required during each cell cycle phase must be met or the cycle cannot progress.

Regulation at Internal Checkpoints

It is essential that the daughter cells produced be exact duplicates of the parent cell. Mistakes in the duplication or distribution of the chromosomes lead to mutations that may be passed forward to every new cell produced from an abnormal cell. To prevent a compromised cell from continuing to divide, there are internal control mechanisms that operate at three main cell cycle checkpoints. A checkpoint is one of several points in the eukaryotic cell cycle at which the progression of a cell to the next stage in the cycle can be halted until conditions are favorable. These checkpoints occur near the end of G1, at the G2/M transition, and during metaphase (Figure 2).
In Summary: Control of the Cell Cycle

Each step of the cell cycle is monitored by internal controls called checkpoints. There are three major checkpoints in the cell cycle: one near the end of G₁, a second at the G₂/M transition, and the third during metaphase. Positive regulator molecules allow the cell cycle to advance to the next stage. Negative regulator molecules monitor cellular conditions and can halt the cycle until specific requirements are met.

Cancer and the Cell Cycle

Cancer comprises many different diseases caused by a common mechanism: uncontrolled cell growth. Despite the redundancy and overlapping levels of cell cycle control, errors do occur. One of the critical processes monitored by the cell cycle checkpoint surveillance mechanism is the proper replication of DNA during the S phase. Even when all of the cell cycle controls are fully functional, a small percentage of replication errors (mutations) will be passed on to the daughter cells. If changes to the DNA nucleotide sequence occur within a coding portion of a gene and are not corrected, a gene mutation results. All cancers start when a gene mutation gives rise to a faulty protein that plays a key role in cell reproduction. Eventually, the pace of the cell cycle speeds up as the effectiveness of the control and repair mechanisms decreases. Uncontrolled growth of the mutated cells outpaces the growth of normal cells in the area, and a tumor (~oma) can result.

Proto-oncogenes

The genes that code for the positive cell cycle regulators are called proto-oncogenes. Proto-oncogenes are normal genes that, when mutated in certain ways, become oncogenes, genes that cause a cell to become cancerous.
Tumor Suppressor Genes

Like proto-oncogenes, many of the negative cell cycle regulatory proteins were discovered in cells that had become cancerous. **Tumor suppressor genes** are segments of DNA that code for negative regulator proteins, the type of regulators that, when activated, can prevent the cell from undergoing uncontrolled division. A cell that carries a mutated form of a negative regulator might not be able to halt the cell cycle if there is a problem. Tumor suppressors are similar to brakes in a vehicle: malfunctioning brakes can contribute to a car crash. Mutated p53 genes have been identified in more than one-half of all human tumor cells.

In Summary: Cancer and the Cell Cycle

This video reviews the ways that cancer is a by-product of broken DNA replication:

Cancer is the result of unchecked cell division caused by a breakdown of the mechanisms that regulate the cell cycle. The loss of control begins with a change in the DNA sequence of a gene that codes for one of the regulatory molecules. Faulty instructions lead to a protein that does not function as it should. Any disruption of the monitoring system can allow other mistakes to be passed on to the daughter cells. Each successive cell division will give rise to daughter cells with even more accumulated damage. Eventually, all checkpoints become nonfunctional, and rapidly reproducing cells crowd out normal cells, resulting in a tumor or leukemia (blood cancer).

Check Your Understanding

Answer the question(s) below to see how well you understand the topics covered in the previous section. This short quiz does not count toward your grade in the class, and you can retake it an unlimited number of times.

Use this quiz to check your understanding and decide whether to (1) study the previous section further or (2) move on to the next section.

https://assessments.lumenlearning.co...essions/6886

CC licensed content, Original

- Introduction to Cell Cycle Checkpoints. **Authorised by:** Shelli Carter and Lumen Learning. **Provided by:** Lumen Learning. **License:** [CC BY: Attribution]

CC licensed content, Shared previously

- The Cell Cycle and the Checkpoints. **Provided by:** CK-12. **Located at:** https://www.ck12.org/book/CK-12-Biology-Concepts/r18/section/2.32. **License:** [CC BY-NC: Attribution-NonCommercial]

- Biology. **Provided by:** OpenStax CNX. **Located at:** http://cnx.org/contents/185cbf87-c72e-48f5-b51e-f14f21b5eab9@10.8. **License:** [CC BY: Attribution]. **License Terms:** Download for free at http://cnx.org/contents/185cbf87-c72e-48f5-b51e-f14f21b5eab9@10.8

- Cell cycle regulation, cancer, and stem cells. **Authorised by:** Sal Khan. **Provided by:** Khan Academy. **Located at:** http://www.khanacademy.org/video?v=RZhiL7LDp8w. **Project:** Biology. **License:** [CC BY-NC-SA: Attribution-NonCommercial-ShareAlike]