19.4: Fungal Infections of the Reproductive System

Skills to Develop

- Summarize the important characteristics of vaginal candidiasis

Only one major fungal pathogen affects the urogenital system. *Candida* is a genus of fungi capable of existing in a yeast form or as a multicellular fungus. *Candida* spp. are commonly found in the normal, healthy microbiota of the skin, gastrointestinal tract, respiratory system, and female urogenital tract (Figure \(\PageIndex{1}\)). They can be pathogenic due to their ability to adhere to and invade host cells, form biofilms, secrete hydrolases (e.g., proteases, phospholipases, and lipases) that assist in their spread through tissues, and change their phenotypes to protect themselves from the immune system. However, they typically only cause disease in the female reproductive tract under conditions that compromise the host’s defenses. While there are at least 20 *Candida* species of clinical importance, *C. albicans* is the species most commonly responsible for fungal vaginitis.

As discussed earlier, lactobacilli in the vagina inhibit the growth of other organisms, including bacteria and *Candida*, but disruptions can allow *Candida* to increase in numbers. Typical disruptions include antibiotic therapy, illness (especially diabetes), pregnancy, and the presence of transient microbes. Immunosuppression can also play a role, and the severe immunosuppression associated with HIV infection often allows *Candida* to thrive. This can cause genital or vaginal candidiasis, a condition characterized by vaginitis and commonly known as a yeast infection. When a yeast infection develops, inflammation occurs along with symptoms of pruritus (itching), a thick white or yellow discharge, and odor.

Other forms of candidiasis include cutaneous candidiasis (see *Mycoses of the Skin*) and oral thrush (see *Microbial Diseases of the Mouth and Oral Cavity*). Although *Candida* spp. are found in the normal microbiota, *Candida* spp. may also be transmitted between individuals. Sexual contact is a common mode of transmission, although candidiasis is not considered an STI.
Diagnosis of vaginal candidiasis can be made using microscopic evaluation of vaginal secretions to determine whether there is an excess of _Candida_. Culturing approaches are less useful because _Candida_ is part of the normal microbiota and will regularly appear. It is also easy to contaminate samples with _Candida_ because it is so common, so care must be taken to handle clinical material appropriately. Samples can be refrigerated if there is a delay in handling. _Candida_ is a dimorphic fungus, so it does not only exist in a yeast form; cultivation can be used to identify chlamydospores and pseudohyphae, which develop from germ tubes (Figure \(\PageIndex{2}\)). The presence of the germ tube can be used in a diagnostic test in which cultured yeast cells are combined with rabbit serum and observed after a few hours for the presence of germ tubes. Molecular tests are also available if needed. The Affirm VP II Microbial Identification Test, for instance, tests simultaneously for the vaginal microbes _C. albicans_, _G. vaginalis_ (see [Bacterial Infections of the Urinary System](https://bio.libretexts.org/Courses/Portland_Community_College/Cascade_Microbiology/19%3A_Eukaryotic_Pathogens_and_)), and _Trichomonas vaginalis_ (see [Protozoan Infections of the Urogenital System](https://bio.libretexts.org/Courses/Portland_Community_College/Cascade_Microbiology/19%3A_Eukaryotic_Pathogens_and_)).

Figure \(\PageIndex{1}\): _Candida_ blastospores (asexual spores that result from budding) and chlamydospores (resting spores produced through asexual reproduction) are visible in this micrograph. (credit: modification of work by Centers for Disease Control and Prevention)

Topical antifungal medications for vaginal candidiasis include butoconazole, miconazole, clotrimazole, tioconazole, and nystatin. Oral treatment with fluconazole can be used. There are often no clear precipitating factors for infection, so prevention is difficult.

Figure \(\PageIndex{2}\): _Candida can produce germ tubes, like the one in this micrograph, that develop into hyphae._
Exercise (PageIndex{1})

1. What factors can lead to candidiasis?
2. How is candidiasis typically diagnosed?

clinical focus - part 3

The Gram stain of Nadia's vaginal smear showed that the concentration of lactobacilli relative to other species in Nadia's vaginal sample was abnormally low. However, there were no clue cells visible, which suggests that the infection is not bacterial vaginosis. But a wet-mount slide showed an overgrowth of yeast cells, suggesting that the problem is candidiasis, or a yeast infection (Figure (PageIndex{3})). This, Nadia's doctor assures her, is good news. Candidiasis is common during pregnancy and easily treatable.

Exercise (PageIndex{2})

Knowing that the problem is candidiasis, what treatments might the doctor suggest?

Figure (PageIndex{3}):

(a) Lactobacilli are visible as gram-positive rods on and around this squamous epithelial cell.
(b) This wet mount prepared with KOH shows Candida albicans pseudohyphae and squamous epithelial cells in a vaginal sample from a patient with candidiasis. (credit a: modification of work by Centers for Disease Control and Prevention; credit b: modification of work by Mikael Häggström)

- *Candida* spp. are typically present in the normal microbiota in the body, including the skin, respiratory tract, gastrointestinal tract, and female urogenital system.
- Disruptions in the normal vaginal microbiota can lead to an overgrowth of *Candida*, causing vaginal candidiasis.
- Vaginal candidiasis can be treated with topical or oral fungicides. Prevention is difficult.

Multiple Choice

Which oral medication is recommended as an initial topical treatment for genital yeast infections?
Fill in the Blank

The most common *Candida* species associated with yeast infections is _____.

C. albicans

Contributor

- Nina Parker, (Shenandoah University), Mark Schneegurt (Wichita State University), Anh-Hue Thi Tu (Georgia Southwestern State University), Philip Lister (Central New Mexico Community College), and Brian M. Forster (Saint Joseph’s University) with many contributing authors. Original content via Openstax (CC BY 4.0; Access for free at https://openstax.org/books/microbiology/pages/1-introduction)