21.1B: Evolution of Viruses

The evolution of viruses is speculative as they do not fossilize; biochemical and genetic information is used to create virus histories.

Learning Objectives

• Describe the difficulties in determining the origin of viruses

Key Points

• Scientists agree that viruses don’t have a single common ancestor, but have yet to agree on a single hypothesis about virus origins.
• The devolution or the regressive hypothesis suggests that viruses evolved from free-living cells.
• The escapist or the progressive hypothesis suggests that viruses originated from RNA and DNA molecules that escaped from a host cell.
• The self-replicating hypothesis posits a system of self-replication that most probably involves evolution alongside the host cells.

Key Terms

• self-replicating: able to generate a copy of itself
• devolution: degeneration (as opposed to evolution)
Evolution of Viruses

Although biologists have accumulated a significant amount of knowledge about how present-day viruses evolve, much less is known about how viruses originated in the first place. When exploring the evolutionary history of most organisms, scientists can look at fossil records and similar historic evidence. However, viruses do not fossilize, so researchers must conjecture by investigating how today's viruses evolve and by using biochemical and genetic information to create speculative virus histories.

While most findings agree that viruses don’t have a single common ancestor, scholars have yet to find one hypothesis about virus origins that is fully accepted in the field. One possible hypothesis, called devolution or the regressive hypothesis, proposes to explain the origin of viruses by suggesting that viruses evolved from free-living cells. However, many components of how this process might have occurred are a mystery. A second hypothesis (called escapist or the progressive hypothesis) accounts for viruses having either an RNA or a DNA genome and suggests that viruses originated from RNA and DNA molecules that escaped from a host cell. A third hypothesis posits a system of self-replication similar to that of other self-replicating molecules, probably evolving alongside the cells they rely on as hosts; studies of some plant pathogens support this hypothesis.

As technology advances, scientists may develop and refine further hypotheses to explain the origin of viruses. The emerging field called virus molecular systematics attempts to do just that through comparisons of sequenced genetic material. These researchers hope to one day better understand the origin of viruses, a discovery that could lead to advances in the treatments for the ailments they produce.

Figure (PageIndex{1}): Common ancestor tree of life: This phylogenetic tree of the three domains of life (Bacteria, Archaea, and Eukarya) attempts to identify when various species diverged from a common ancestor. Finding a common ancestor for viruses has proven to be far more difficult, especially since they do not fossilize.